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We focus attention on an idealized granular material comprised of identical, smooth, 
imperfectly elastic, spherical particles which is flowing at such a density p d  is being 
deformed a t  such a rate that particles interact only through binary collisions with 
their neighbours. Using general forms of the probability distribution functions for the 
velocity of a single particle and for the likelihood of binary collisions, we derive local 
expressions for the balance of mass, linear momentum and fluctuation kinetic energy, 
and integral expressions for the stress, energy flux and energy dissipation that appear 
in them. We next introduce simple, physically plausible, forms for the probability 
densities which contain as parameters the mean density, the mean velocity and the 
mean specific kinetic energy of the velocity fluctuations. This allows us to  carry out 
the integrations for the stress, energy flux and energy dissipation and to  express these 
in terms of the mean fields. Finally, we determine the behaviour of these fields as 
solutions to the balance laws. As an illustration of this *e consider the shear flow 
maintained between two parallel horizontal plates in relative motion. 

1. Introduction 
Rapid deformations of dry, relatively dense granular materials occur in many 

industrial processes and geophysical phenomena. Such flows of interest here proceed 
a t  those densities and strain rates a t  which the impulsive forces in collisions between 
pairs of neighbouring particles are responsible for the transfer of momentum in the 
flowing material. At lower particle densities the transport of momentum by particle 
translations becomes important, while a t  lower rates and higher concentrations, 
multiple contacts of longer duration require the consideration of forces associated 
with the sliding of particles over their neighbours. 

Roughly thirty years ago Bagnold (1954) considered the collisions between 
particles of a rapidly sheared granular material consisting of identical spherical grains. 
Bagnold argued that, because both the momentum exchanged in a collision and the 
frequency of collisions are proportional to the mean rate of shear, the shear stress 
and the normal stress must both be proportional t o  the square of the mean shear rate. 
The normal stress and shear stress measured in Bagnold’s own experiments and the 
more recent experiments of Savage (1978) and Savage & Sayed (1980,1982) on simple 
shear flows do depend on the mean rate of shear in this way. However, in more general 
shearing flows Bagnold’s relations between the stresses and the mean shear rate 
require that the stresses vanish a t  points of the flow where the mean shear rate is 
zero. But a t  these points particle interactions may still persist as enduring contact 
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forces between particles or as impulsive forces in collisions resulting from the 
fluctuations of the particle velocity about the mean. These fluctuations are an 
inevitable result of the collisions between particles being swept together by the mean 
flow. Bagnold did not consider these fluctuations except to assume that they were 
random and that the production of mean kinetic energy associated with them was 
balanced by dissipation into heat in collisions. 

The importance of the velocity fluctuations and the means by which they could 
be included in a properly formulated continuum theory were first appreciated by 
Blinowski (1978) and Ogawa (1978). Blinowski exploited the analogy between the 
rapid deformation of a granular material and the turbulent flow of a compressible 
fluid, and, using modifications of arguments employed in the theories of turbulence, 
he derived local forms of the balance laws for the mean density and velocity, and 
for the second moment of the velocity fluctuations - the turbulent Reynolds stress. 
For a complete theory, the mean stress, and the flux and internal production of 
Reynolds stress must be related to the mean density, the mean velocity and the second 
moment of the velocity fluctuations. Ogawa adopted a somewhat simpler approach 
and introduced a fluctuation temperature in terms of the mean kinetic energy of the 
particles’ velocity fluctuations. He proposed a balance law for this temperature that 
related its rate of change to its production by the mean flow, its flux from one point 
to another in the flow, and its dissipation into true thermal energy. Here again these 
last two quantities and the mean stress must be related by constitutive assumptions 
to the mean density, mean velocity and the fluctuation temperature in order to 
complete the theory. General forms of the constitutive relations for this theory or 
for Blinowski’s formulation may be written down without difficulty. The problem is 
that they are so general that  they are of little use. What would be most desirable 
are constitutive relations that,  in addition to showing their dependence on the mean 
density and on the relevant means involving the velocity, exhibited explicitly the 
influence upon them of the known particle size, shape, mass, inelasticity, roughness 
etc. Such relations can only be obtained in advance by modelling the collisions 
between particles, determining the collisional changes in the physical quantities of 
interest, and averaging these over all possible collisions. 

Ogawa (1978) has proposed such a scheme of modelling and averaging, and Ogawa, 
Umemura & Oshima (1980) have elaborated upon it. I n  their model a particle moves 
within a spherical surface that represents its neighbours. The radius of the sphere 
is determined by the particle density. Points on the sphere are assumed to be 
instantaneously moving with the mean velocity appropriate to their location. The 
particle moves relative to the mean flow with its fluctuation velocity. The distribution 
of this random variable is taken to be somewhat special ; the magnitude of the velocity 
fluctuation is supposed to be constant and all orientations are assumed to be equally 
likely. In  collisions, a fraction of the particles are assumed to adhere to the sphere, 
while the remainder rebound from i t  with a loss of energy and slip relative to its 
instantaneous motion. Ogawa et al. determine the total rate of change of fluctuation 
energy in such collisions by averaging over all possible collisions. This, with an 
estimate of the frequency of collisions, allows them to calculate the total rate of 
change of fluctuation energy and, finally, to infer how the mean stress and mean 
dissipation of fluctuation energy depend upon the collision parameters and upon the 
means of the density, fluctuation energy, and strain rate. 

The flux of fluctuation energy is not given by this procedure, nor is it clear how 
the scheme might be extended in order to predict the form of this flux. This is the 
general disadvantage of the method. Too many simplifying assumptions are required 
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to model the collisions and to carry out the averaging, arid i t  is extremely difficult 
to see how these should be modified in order to extend or improve upon the 
predictions. 

At this time it  is clear that such extensions and improvements are necessary. 
Jenkins & Cowin (1979) have shown that the flux of fluctuation energy must be 
included in such a theory if it is to describe the steady, gravity-driven flow in a vertical 
channel. Without this flux there is no mechanism by which momentum can be 
transferred across the centreline of the channel, and the strain rate must vanish 
everywhere. Furthermore the theory of Ogawa et al. predicts stress levels in simple 
shear flow that are far too low (Lun, Savage & Jeffrey (1983)). 

Recently Savage & Jeffrey (1981) have placed the problem of a rapidly deforming 
granular material in the context of the kinetic theory of dense gases. This immediately 
allows the use of numerous existing results regarding collisions and averaging, and 
avoids many of the difficulties confronted by Ogawa et al. One important difference 
between a kinetic theory for a classical dense gas and that for a rapidly deforming 
granular material is that  in the granular material an inhomogeneity of the mean flow 
is necessary to force the collisions and to drive the velocity fluctuations. The 
temperature of a dense gas can also be influenced by the addition of heat throughout 
its interior or over its surface.t I n  Savage & Jeffrey’s treatment, the importance of 
the mean deformation was reflected in the anisotropy of the distribution function that 
they proposed to govern the probability of collisions between pairs of particles. 
Collisions between particles being swept together by the mean flow were regarded as 
more likely than those between particles being swept apart. They considered a dense 
collection of identical spherical particles subjected to a rapid mean shear and, for 
perfectly elastic particles, calculated the components of the mean stress that result 
from the exchange of momentum in collisions. 

The second important difference between the kinetic theories for a dense gas and 
a rapidly sheared granular material is that  collisions between the particles of a 
granular material involve a loss of energy. Consequently, for smooth inelastic 
particles, Savage & Jeffrey’s determination of the stress must be improved by 
incorporating the energy lost in collisions, and their calculations must be extended 
in order to  deliver the rate a t  which fluctuation energy is dissipated into heat. Then, 
for example, in homogeneous, steady deformations, the fluctuation energy may be 
determined in terms of the mean rate of strain by equating the rate a t  which energy 
is supplied to the fluctuations by the mean flow to the rate a t  which fluctuation energy 
is dissipated into heat. This is the homogeneous, steady version of Ogawa’s balance 
law for the rate of change of fluctuation energy. 

Here we carry out a program outlined by Jenkins & Savage (1981) and develop 
a kinetic theory for rapid deformations of identical, smooth, nearly elastic, spherical 
particles. Using Maxwell’s (1866) equations of transfer we derive the balance laws 
for mass, linear momentum and fluctuation energy. I n  these appear explicit expressions 
for the flux and production of linear momentum and fluctuation energy. These are 
given as integrals that  involve the change of linear momentum and kinetic energy 
in a binary collision and the probability distribution function that governs the 
likelihood of such collisions. I n  order to evaluate these integrals we introduce a 
simplified form of the distribution function proposed by Savage & Jeffrey (1981) that  

t There are, of course, situations involving granular materials in which the boundary can drive 
the fluctuations independently of the mean deformation or in which energy may be put into the 
fluctuations directly throughout the volume in the absence of LL mean motion, but here we do not 
consider such active boundaries and ignore the inertia and viscosity of the interstitial gas. 
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is appropriate for nearly elastic particles. I n  it the anisotropy of the collisional pair 
distribution function is assumed to  be linear in the mean rate of deformation. The 
form of the assumed anisotropy is identical with that predicted by numerical 
simulations of the molecular dynamics of rapidly sheared fluids (Ashurst & Hoover 
1975; Evans & Watts 1980). Forms for the pressure tensor, the flux of fluctuation 
energy and the dissipation of fluctuation energy are calculated that exhibit the 
dependence of these on the mass, diameter and coefficient of restitution of the 
particles and on the means of the density, fluctuation energy and rate of deformation. 

Using the derived balance laws and constitutive relations we consider a simple 
boundary-value problem in which the material is sheared between parallel horizontal 
plates. This is an idealization of the flow in the experiments of Savage & Sayed (1980, 
1982). If the material is assumed to be sheared homogeneously, and realistic values 
for the coefficient of restitution and the parameter governing the anisotropy of the 
pair distribution are employed, the theory predicts the values of the shear and normal 
stress measured by Savage & Sayed. However, the assumption of homogeneity 
requires that there be no flux of fluctuation energy through the boundary - and it  
is not certain that this is the case. 

2. Two-particle collisions 
We consider the collision of two identical smooth spherical particles of mass m and 

diameter cr. Quantities associated with each sphere are distinguished by the subscript 
1 or 2 and primes denote the values of these quantities following a collision. 

The balance of linear momentum requires that the velocity vectors c, and c, of 
the centre of each particle after a collision be related to  those c1 and C, before the 
collision by 

mci = mc, - J, mc; = mc, + J, 

where J i s  the impulse of the force exerted by particle 1 upon particle 2 in the collision. 
The relative velocity ci, of the centres of the particles after the collision is 

I ts  component normal to the plane of contact is rupposed here to  be related to the 
corresponding component prior to the collision by 

(k*c:,)  = -e (k*c , , ) ,  (3) 

where k is the unit vector directed from the centre of the first particle to that of the 
second particle at contact, and e is the familiar coefficient of restitution. Depending 
upon the material of the particle, e may range from zero to one. When e equals one, 
the relative velocities of the centres of the particles is reversed upon collision and 
energy is conserved. Values of e less than one involve the dissipation of energy. 

With (3) and ( 1 )  the value of the impulse J may be expressed in terms of c,, as 

J = &( 1 + e )  (k*c, , )  k .  

ci = c l -&(l  + e )  (k-c , , )  k ,  

ci = c,+$(l + e )  (k*c , , )k .  

(4) 

Consequently the values of the particles’ velocities are given in terms of their values 

(5) 
before the collision by 

(6) 

AE = b ( c ; ” + ~ ; 1 2 ) - $ m ( ~ 2 + ~ : ) ,  (7)  

The energy change AE in the collision is 
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where, for example, c; = c,*cl. With ( 5 )  and (6), the change in energy may be written 
in terms of c,, as AE = $n(e2-  1) ( k . ~ , , ) ~ .  

3. Statistical preliminaries 

two-particle configurational distribution function n@)(r1, r , ) ,  defined so that 
The statistics of the spatial arrangement of pairs of particles is governed by the 

d 2 ) ( r 1 ,  1,) dr,dr, (9) 

is the probable number of pairs of particles with one in each of the volume elements 
dr, and dr,  centred a t  rl and r,  respectively. As defined, n@) is unaffected by 
interchanging the positions of the two particles. When the mean flow is homogeneous, 
#(r1 ,  r,) is isotropic and depends only upon d = (r,  - r l ( .  I n  this event a radical dis- 
tribution function g,(d) is defined by 

where n is the uniform number density of particles. An example of a particular 
radial distribution function that is important in what follows is that  determined 
numerically by Carnahan & Starling (1969) for a fluid of identical hard spheres at 
contact, d = 6. It is given as a function of the solid-volume fraction v = 4nna3 by 

The statistics of the binary collisions are determined by the complete pair- 
distribution function f @), a function of two particles’ velocities, positions and the time 
defined so that 

is, a t  time t ,  the probable number of pairs of particles located in the volume elements 
dr, ,  dr,  centred at the points rl and r,, and having velocities in the ranges dc, and 
dc2 at C, and c,. When this distribution is integrated over all velocities, by definition, 
d 2 ) ( r 1 ,  r2 )  is regained: 

(12) 

I n  a similar way a single-particle velocity distribution functionf(’)(c, r ,  t )  is defined 
so that f (l)(c, r ,  t )  dc is the probable number of particles per unit volume a t  r and 
t with velocities in the element dc a t  c .  Integrating f(l) over all velocities gives the 
local number density of particles 

jf@)(c,, r,, c,, r2, t )  dc,dc, = n(?-)(r,, r,, t ) .  

Sf(’)(c, r ,  t )  dc = n(r, t ) .  

<+) = / + ( c ) f  (l)(c, r,  t )  d c ;  

(13) 

Given any property +(c) ,  its mean, or ensemble average, (+) is determined in terms 
of f(l) by 

(141 

so, for example, the mean velocity u is (c). 



192 J .  7'. Jenkins and S.B. Savage 

4. Maxwell transport and the balance laws 
Let $(c)  be any property of a particle, and focus attention on a volume element 

dr fixed in space. In a time dt the total mean amount of $, (n$), in dr changes for 
three reasons: because the velocity c of each particle varies with time; because 
particles bearing @ enter and leave dr;  and because of collisions between particles 
in dr. Thus (Reif 1965, $14.4) 

(15) 
a 
- <n$) = n(D$> - V' (nc$) + C($L at 

where 

and F = F(r, t)  is the external force acting on a particle ; the divergence is the mean 
efflux of $ from dr, and C($) is the mean collisional rate of change of $ per unit 
volume. In order to  calculate C($) we must examine further the details of a collision. 

Consider a particle with velocity c, located a t  r,. For a second particle travelling 
with velocity c, to collide with it in a time interval dt in such a way that, at collision, 
the line of centres r2 - rl = uk is within the solid angle dk centred at k ,  it is necessary 
that the centre of the second particle lie in a collision cylinder of volume a2(c12* k )  dk dt. 
Consequently, the probable number of collisions per unit time such that r, is in a 
volume element dr,, the velocities c, and c, of the particles are in the ranges dc, and 
dc,, and k is in the solid angle dk is (Chapman & Cowling 1970, $ 16.2) 

f ( , ) (c , ,  r,,  c,, r,) u2(c, ,*k) dkdc,  dc, dr,. (17) 

As a result of a collision, the property $, = @(c,) changes to 11.6 = $(ci). This, with 
(17), gives the collisional rate of change of @ per unit volume, C(+), as 

where c,,*k > 0 indicates that the integration is to be taken over all values for which 
a collision is impending. To obtain a more symmetric form we note that a collision 
identical with that just considered occurs between a particle with velocity c, at r, 
and a particle with velocity c, a t  r ,+uk.  For this collision the probability corre- 
sponding to (17) is 

f2)(c1, r,, c,, r2 + uk) u2(cl2.k)  dk dc, dc, dr,. (19) 

In this, however, the property of the particle at r2 is @(c,) .  Consequently, an 
equivalent expression for C($) is 

The probability distribution in (20) may be related to that in (1 8) by shifting the pair 
of spatial points a t  which it is evaluated through the expansion 

f ( 2 ) ( ~ , , r 2 , ~ 2 , r 2 + u k )  =f(2)(~1,rl,~2,r2)+uk~Vf(2)(~1,rl,~2, r,) .  (21) 

Using this in (20), adding the result t o  (18), and taking half of the sum gives C($) 
in the form 

C(li/) = -v-e(@)+x(@L (22) 
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e($) = -4gJJJ c 1 2 * k > o  4ll.I - $df2)(c1, rl, c,, r,) a2(cl,*k) dk dc, dc,, 
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where 

(23) 

($; + $; - @ I -  @ 2 ) f ( 2 ) ( ~ , ,  rl, c2, r2)  g2(c12*k) dk dc, dc,. (24) ~ ( $ 1  = f [J[ c12* k > O  

With (22), the general form of (15) is 

in which D$ is given by (16), e($)  by (23), and x(@) by (24). 
Taking $ to  be m in (25) yields the local form of the conservation of mass: 

p = -pV-u ,  (26) 

where p = mn is the mass density and the dot indicates a time derivative calculated 
with respect to the mean motion. 

Taking $ to be mc in (25) and using (26) gives the local form of the balance of linear 
momentum 

where C E c - u, @ denotes a tensor product, and P is the collisional pressure tensor 
given by 

p i  = - V * ( p C Q  C ) - V . P + n F ,  (27 ) 

and employing (26) and (27), yields the local form of the balance of fluctuation energy : 

3 2P T = - V * ($C2C) - t r  (Vu(pC Q C ) )  - V - q  - t r  (mu) - y.  (31) 

Here the fluctuation energy T is given in terms of the specific kinetic energy of the 
fluctuations by 3T = (C2), t r  denotes the trace, and y is the collisional rate of 
dissipation per unit volume, 

r r r  

where the energy change in a collision is given in terms of the coefficient of restitution 

Because of the presence of dissipation the standard techniques of the kinetic theory 
that exploit symmetries present in conservative collisions could not be used to  obtain 
the balance laws and the integral forms of the constitutive relations. I n  particular, 
the relatively simple argument leading to the integral forms for the collisional flux (23) 
and the collisional production (24) is crucial to the development of the present theory. 

Contributions to  the flux of linear momentum and fluctuation energy arise from 
two sources, the transport of these quantities by particles moving between collisions, 
and their transfer in collisions. For the dense collections of particles that  we consider 
here, collisional transfer dominates and transport is negligible. Consequently, in what 
follows we make an insignificant error in ignoring the first term on the right-hand 
side of (27) and the first two terms on the right-hand side of (31). 

e by (8). 
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5. The collisional pair-distribution function 
In  order to calculate explicit expressions for P, q ,  and y i t  is necessary to determine 

the form of the complete pair-distribution function f @ )  at collision. In principle this 
function should be obtained as the solution of an evolution equation, perhaps similar 
in form to the Boltzaann equation governing the evolution off(') in the kinetic theory 
of gases. However, even if we were secure in proposing the form of the evolution 
equation for $(,) in these dense dissipative systems, the difficulties of obtaining and 
interpreting solutions would be a t  least as great as for the Boltzmann equation. 

Here we avoid these difficulties and introduce a simple, physically plausible form 
forf@) a t  collision. The underlying idea is that, when an inhomogeneous mean flow 
is present in these dense arrays of particles, collisions between those neighbouring 
particles being swept towards each other by spatial variations in the mean flow are 
more likely than for particles being swept away from each other. The proposed form 
of f  (2) exhibits this collisional anisotropy in, perhaps, the simplest possible way ; 
likewise, its dependence upon the particle velocities is given in terms of elementary 
but plausible velocity distributions for each particle. The resulting form of f ( 2 )  
contains the mean fields n, u,  and T as parameters. We require that these five 
functions be solutions of the Maxwell transport equations (26), (27) and (31) 
corresponding to the conservation of mass, the balance of linear momentum and the 
balance of fluctuation kinetic energy. 

Following Savage & Jeffrey (1981), we first adopt a slight generalization of the 
assumption of molecular chaos and suppose that the distribution function can be 
expressed as the product of a normalized pair-distribution function g(rl ,  r,) and the 
single particle velocity distribution function for each particle, 

where r2-r1  = uk, 
(34) 

and the subscripts 1 and 2 on mean fields indicate that these are to be evaluated a t  
rl and r2 respectively. 

We next suppose with Savage & Jeffrey that the single-particle velocity distributions 
are Maxwellian about the mean velocity. Then, for example,f 

Finally, as do Savage & Jeffrey, we argue that,  in order for g(rl ,  r2 )  to exhibit an 
anisotropy due to the presence of the mean flow, it should depend not only upon v, rl 
and r,  but also upon T, u1 and u,. Here v and Tare  evaluated a t  the point of contact. 
For form invariance under rigid motions the dependence of g on its vector arguments 
must be restricted to  the inner products of r2 - r l  = - uk and u2-u1 = uz1. Then for 
dimensional homogeneity the arguments of g can only be v, k*u,,/@, and &IT. In 
what follows we restrict attention to situations in which the magnitude of uZ1 is small 
relative to @. In  this limit we adopt for g(rl ,  r2 )  its most general linear anisotropic 
form 

t The distribution function given by Savage & Jeffrey must be corrected by replacing 3 by 
throughout (Savage & Jetfrey 1982). 
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where the dependence of go upon v is assumed to be given by (lo),  and a is an arbitrary 
function of v that  remains to be specified. For example, a linearization of a form for 
g(rl ,  r2)  proposed by Savage & Jeffrey gives a constant CL = 1 .  For a homogeneous 
shear flow the form of the pair-distribution function (36) reduces to that obtained 
by Ashurst & Hoover (1975) and Evans & Watts (1980) in numerical simulations of 
the dynamics of particles subjected to a mean shear. A later analysis of such a flow 
here indicates that  for nearly elastic particles the anisotropic term is sufficiently small 
to justify the linear expansion. 

With these assumptions the complete pair-distribution function a t  collision has the 
form 

6. Constitutive relations 
I n  order to evaluate the collision integrals ( 2 8 ) ,  (30), and ( 3 2 )  we adopt the form 

(37) for fz) and expand it  in terms of a Taylor series about the point of contact r. 
This allows the evaluation of the mean fields and their derivatives a t  this point. Upon 
discarding terms involving spatial derivatives higher than the first, this expansion 
yields the approximation (Chapman & Cowling 1970, $16.31) 

jfi) = n (-)’ l a  exp [ -‘j (c -u)Z 

27cT 2T where, for example, (39) 

Employing (38) in the collision integrals and carrying out the integrations in a 
manner parallel to  that  of Chapman & Cowling (1970, $$16.41 and 16.42, with the 
aid of the integrals evaluated in their $91.42 and 16.8 and others given in the 
appendix) we obtain the constitutive relations 

where 

y=----[12T-(3n+4a)r ~ ( 1 - e )  
2r2 

K = Spvg, cr( 1 + e) , 2 0  = V u  + ( V U ) ~ ,  

q = - K V T ,  

P = nkcr-’@/-&+2+a) [ ( t rD) /+20]  

(here 1 is the unit tensor). 
The forms of the rate of dissipation (40) and the pressure t&or (42) differ from 

those calculated by Ogawa et al. (1980). This is due to the differences in modelling 
the collisions and carrying out the averages. The flux of fluctuation energy is 
essentially identical with that of the heat flux calculated by Chapman & Cowling 
(1970), and the pressure tensors of the two theories are similar. However, this 
resemblance of results is not due to any similarity in method but to a superficial 
similarity in the structure of the distribution function (38) and that derived by 
Chapman & Cowling as an approximate solution to the Boltzmann equation. 
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7. Shearing between parallel horizontal plates 
To illustrate the nature of the boundary-value problems that result from the 

balance laws and constitutive theory, we consider shear flow maintained between 
parallel flat plates a fixed distance L apart. The plates are supposed to be horizontal 
and in relative motion. 

Of course, a complete formulation of the boundary-value problem requires the 
conditions on, say, the mean velocity and the energy flux be specified on the surface 
of the plates. However, as yet, we are not certain of the exact form of these boundary 
conditions. Videotapes of experiments carried out by Savage &, Sayed show that 
even at a roughened boundary the mean velocity of the particles is not that of the 
boundary. Some slip seems always to occur. The videotapes also show that the 
velocity fluctuations of the particles in the neighbourhood of the boundary are 
suppressed. This indicates a flux of energy through the boundary. In general, such 
a flux should depend upon the fluctuation energy near the surface, the material of 
the surface, and its roughness. 

A derivation of the correct boundary conditions on the velocity and energy flux 
appears to require a detailed analysis of the collisional transfer between the boundary 
and neighbouring particles similar to and perhaps more complicated than that just 
carried out. In the absence of such an analysis and for the purpose of illustration, 
we shall suppose that the mean velocity and the energy flux are specified a t  a 
boundary but defer consideration of how these specifications are related to the 
velocity of the boundary, the velocity fluctuations near it, the material of the 
boundary, and its roughness. 

An appropriate orientation of the x- and z-axes of a rectangular Cartesian system 
insures that the density, the non-vanishing x-component u of the mean velocity, and 
the specific fluctuation energy are functions of z alone. In this event, the conservation 
of mass (26) is identically satisfied; the balance of linear momentum (27) reduces to 

where the prime indicates a derivative with respect to z, and G is the gravitational 
acceleration ; and the balance of fluctuation energy (31) becomes 

0 = -q;- Pzzu’- y.  (45) 

From (42), the relevant components of the pressure tensor are 

from (41) the energy flux is 

and from (40) the dissipation is given by 

y = 6 c 2 (  1 - e) KT. (49) 

Because of the presence of gravity, there is no symmetry about the centreline of 
the flow ; so we choose the origin of the z-axis at the bottom plate. Without loss of 
generality we may suppose that the mean velocity of the particles is zero at z = 0 
and U at  z = L. In general the energy flux through the top and bottom boundaries 
will be different because the velocity fluctuations at  the upper and lower plate will 
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differ. Because of this, in the more complicated boundary-value problem involving 
gravity we only obtain the ordinary differential equations governing the mean 
density, velocity and fluctuation energy and indicate their solutions. When gravity 
can be ignored, we exhibit solutions to  the differential equations that depend upon 
U and the flux Q of fluctuation energy a t  the upper and lower boundaries. 

The horizontal component (43) of the linear momentum balance may be integrated 
immediately and the result used wit,h the constitutive relation (46) to obtain 

(50) i K ( 2  fa)  U' = 8, 

where S is a constant equal to the shear stress applied to the flow at the top plate. 
An approximate integral of the vertical component (44) of the momentum balance 

(that might serve as the first step in an iterative scheme) may be obtained by replacing 
the local value of the density p by its constant mean value p over the width of the 
flow. This, used with the constitutive relation (47), yields 

X ~ K U - ~ T ~  = -pGz+ N ,  (51) 

where N is the pressure at the bottom plate. 

and the dissipation, the energy balance (45) may be written as 
Employing the shear stress S and the expressions (48) and (49) for the energy flux 

( K ! P ' ) ' + S U ' - ~ U - ~ ( ~ - ~ ) K T  = 0. (52)  

From (51), K may be expressed in terms of z and T and this used in (50) to obtain 
a similar representation for u'. With these, (52) may be rewritten as 

Finally, upon introducing the new independent variable w = @and the dimensionless 
~~ 

vertical coordinate 
s = u-1~3(1-eli($-z), (54) 

(55)  
(53) may be written as w+-w-(l-$)w= 1 0, 

8 

where a dot denotes a derivative with respect to s and 

Although it is remarkable that (55) governing the specific fluctuation energy is linear, 
its solutions are Bessel functions of imaginary order and imaginary argument (Watson 
1966, p. 47). Since these are, apparently, not tabulated, the linearity of (55) is of little 
utility. I n  principle the solution for T allows the integration of (50) for u, the 
integration of (51) for p,  and the imposition of the boundary conditions. Physically, 
such solutions are important in interpreting experiments in which the vertical forces 
applied to the boundaries of a shear cell are of the same order as the weight of material 
contained in the cell. Experiments that  include data in this range, corresponding to 
relatively low shear rates, have been reported by Savage % Sayed (1980, 1982). 
Practically, the determination of the detailed form of such solutions must await a 
better understanding of the boundary conditions. 

In  situations in which the shear rates are so high that the vertical forces that must 
be applied to a shear cell are much greater than the weight of the material contained 
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in the cell, a far simpler analysis of the flow between parallel plates is possible. The 
largest number of experiments carried out by Savage & Sayed (1980, 1982) fall in 
this range. The analysis exploits the symmetry present when gravity may be ignored. 

I n  this case we choose the origin of the z-axis a t  the centre of the flow and adopt 
the boundary conditions u(4L) = -u( -4L) = u, 

a,(&) = -q,(-&) = Q. 

(57) 

(58) 

&~-1Tt  = N ,  (59) 

When gravity is negligible (50) is unchanged, but (51) becomes 

where N is now the constant pressure throughout the flow. Then (59) and (50) may 
be used to  eliminate K and u' from the energy balance (52), and the resulting equation 
may be written in the form 

where a dot here denotes a derivative with respect to the non-dimensional vertical 

W+hw = 0, (60) 

coordinate s = z/L and 
h = (g)2[&(gr-3(1-e)]. 

If h is zero, the specific fluctuation energy is uniform and there is no flux of energy 
through the boundaries. Then (59) used with the definition of K relates the uniform 
density to the specific fluctuation energy, and (59) and (50) used together with the 
boundary conditions (57) determine the relationship between T and the constant 
shear rate 2 U I L  : 

The ratio of S to N is determined by (61) upon setting h equal to zero, in which event 
(62) may be written as Ti! = 2[ 2 + a  1'9 

30(1-e)  

Because K is proportional to @, in this homogeneous shearing flow both the shear 
stress S ,  from (50), and the normal stress N ,  from (59), are proportional to the square 
of the shear rate. This need not be the case in more general flows. Also the ratio 
u U / L f i ,  which could not be determined by Savage & Jeffrey (1981), is given through 
(63) in terms of the coefficient of restitution e and a. This ratio is small when the 
particles are nearly elastic and e is close to  one. I n  this case the anisotropic term in 
the expansion (36) of the pair-distribution function is also small. This is the reason 
that we have restricted our attention to  nearly elastic particles. 

The experiments of Savage & Sayed indicate that a t  the relatively high rates of 
shear the ratio of the shear stress to the normal stress is approximately constant. This 
is consistent with the behaviour predicted by (61) for the homogeneous flow if a is 
nearly constant. In  fact, over the range of strain rates where the ratio is constant, 
the measured values of the shear stress and normal stress can be reproduced by 
choosing a = 1 and e = 0.9 (Lun, et al. 1983). However, we anticipate that only in 
exceptional cases will there be no flux of energy through a boundary. 

In  order to treat the general case we suppose that h is positive and adopt the 
simplification of constant a. Then the elementary solution of the boundary-value 
problem (58) and (60) is 

4 L Q cos (h:z/L) 
G l v  sin (+A:) . 
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With this, the analogue of (62) may be integrated to 

where the integration constant has been set equal to zero to ensure that u is odd in 
z. The boundary condition (57) applied to the solution (65) forces the conclusion that, 
if U and S have the same sign, then Q must be positive, and, with the definition (61) 
of A ,  leads to the quadratic equation 

4Q S 6(1-e)(2+a)  = o  
5rc 

for the determination of S I N .  

of cosh ( l A l i z l L ) .  Then, if U and S have the same sign, Q is negative. 
In  the event that A is negative, the alternative to (64) is easily obtained in terms 

8. Concluding remarks 
We have presented what may be the simplest possible kinetic theory for the rapid 

deformations of a granular material. This simple theory gives qualitative and 
quantitative predictions in agreement with the experiments known to us on rapid 
deformations of identical, smooth, nearly elastic, spherical particles a t  moderate 
concentrations. However the greatest benefit in developing such a kinetic theory is 
in clarifying the questions of what assumptions must be abandoned or what 
ingredients must be added in order to improve the theory and to  extend i t  to more 
complicated physical situations. 

At this stage i t  is not difficult to see how to extend the theory to  less elastic spheres, 
to rough, spinning disks or spheres, or to mixtures of spheres with different diameters. 
These calculations are all in progress. 

A more difficult problem is the derivation of appropriate boundary conditions based 
upon a description of the geometry, physical properties, and motion of a bounding 
surface; the details of a collision between a particle and the boundary; and a 
statistical characterization of the likelihood of such collisions. Here it may be 
necessary to  introduce the second moments of the velocity fluctuations into the 
theory. There also are difficulties in extending the present theory to  include the 
inertial and viscous properties of the gas or fluid surrounding the particles. It seems 
clear that  in the present context pneumatic effects could serve as a source of 
fluctuation energy while viscosity would contribute to the rate of dissipation of the 
fluctuations. Ackermann & Shen (1982) and Shen & Ackermann (1982) have been 
relatively successful in incorporating viscous dissipation in a scheme of modelling and 
averaging similar to that employed by Ogawa and his collaborators, but i t  is not yet 
clear how to include the inertial and viscous properties of the fluid phase in a kinetic 
theory for granular materials. 

Finally there are the questions of the form of the evolution equation for the 
distribution f@) and of the method by which multiple and sliding contacts can be 
treated. Questions similar to these have been the subject of research in the classical 
kinetic theory since its beginning, but i t  remains to be seen how the results of this 
research can be applied in a kinetic theory for granular materials. 
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Appendix 
Here we provide some integrations with respect to k to supplement those given 

by Chapman & Cowling (1970, 516.8). These are used in deriving the constitutive 
relations (40), (41) and (42)  from the integrals (32), (30)  and (28) respectively, when 
the pair-distribution function is given by (38) .  

Following Chapman and Cowling we introduce an orthonormal triad of base vectors 
h, i, and j and choose h parallel to c12. We suppose that 8 and $ are the polar angles 
of k with respect to h and the plane of h and i respectively, so that 

Then c12* k = cos 8, and the element of solid angle dk is given by 

k = h cosB+isine cosq5+jsine sin$. 

dk = sin 0 de d$, 

(A 1 )  

(A 2 )  
The integrals are to be taken over all values of k for which c,,.k is positive, so 

in them 0 varies between 0 and in, while q5 ranges from 0 to 2 ~ .  Consequently all terms 
in the integrand containing odd powers of sin $ or cos $ contribute nothing, and will, 
for brevity, be omitted. 

So, for example, 
2x 

k ( k - ~ , , ) ~ d k  = C& h ~ o s ~ O ~ i n B d O d $  = - c ; ~ c ~ ~ ;  s 5 

while, if v is any vector independent of 0 and q5, 
r r  

Finally, 

jk 6 k(v*k)2  ( k c , , )  dk 

= cI2 Jj([h 6 h cos2 e + i o isin2 e cos2 q5 + j  ~j sin2 e sin2 $1 

*[(v*h)2  C O S ~ ~ + ( V . ~ ) ~  sin28 cos2q5+ ( ~ * j ) ~ s i n ~ O s i n ~ $ ]  

+2(v-h)  [(h 0 i + i O h )  (v - i )  cos2$ 

+ (h @ j + j  0 h) (v'j)  sin2 $1 sin2 8 cos2 8 

+2( iOj+ jO i) (v - i )  ( v - j )  sin4 Bsin2$cos2$}cosOsin8dBd$ 

= & x ~ ~ ~ [ ( v * h ) ~  (15h 0 h + 3i 0 i+ 3j 0 j )  

+ 6 ( v * h ) ( v * i ) ( h O i + i @ h ) + 6 ( v . h )  ( v - j )  (h @ j + j @ h )  

+ 2( v -  i) ( v - j )  (i Oj+ j  0 i) + ( ~ * i ) ~  (3h 0 h + j  Oj+  3i 0 i) 
+ ( ~ * j ) ~  (3h 0 h + 3 j @ j + i  0 i). 
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The integrands of (28), (30) ,  and (32) may be expressed as functions of k by utilizing 
the approximate form of f(,) given by (38) and employing ( 5 ) ,  (8) and the relation 

CiZ-C: = - (1 + e )  [ ( Q - u ) * k ]  (k-c , , )  -f(l - e2) (k*c, , )2 .  

( k - D k )  ( k - ~ , , ) ~ d k  = ~ x c , , ( 3 c 1 ; D c , , + c ~ ,  t r D ) ;  

(A 7)  

where Q = +(cl+cz). Then, for example, (A 5) is used to  establish that 

(A 8) I 
while (A 6) gives 

j ( k - D k ) k @  k(k*c,,)2dk = &~[2( t rD)c , ,  0 c , ,+2(c l ,~Dclz)~  

+ 4(c,, 0 Dc,, + Dc,, 0 c,,) + (tr  D )  /+ 201.  (A 9) 

After carrying out the integrations over k ,  the integrations over c, and c,, or 
alternatively over Q and c,,, are performed in the fashion outlined by Chapman & 
Cowling (1970, Q 1.4). These are facilitated by noting that 

Integrations over k that  lead to integrals that  vanish a t  this step have not been given 
above. 
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